Molecular nydrogen as a mesospheric hydrogen reservoir
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A rare glimpse into the chemical and dynamical 1
evolution of the Arctic polar vortex is provided by
a suite of in situ balloonborne measurements. A
set of mesospheric tracers observed in the late vor-
tex above 25 km validate theoretical mesospheric
chemical profiles, which is especially valuable for
mesospheric H,. Early vortex mesospheric pro-
files are constructed to explain mixing in tracer-
tracer space, and they will constrain estimates of
the amount of mesospheric air that descended to
stratospheric altitudes by vortex end.
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Dynamics: The polar vortex is characterized by
summer-to-winter pole mesospheric circulation
and rapid, isolated descent within the vortex.
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Ho mixing ratios increase into the mesosphere
where H2O is photodissociated by a-Lyman
radiation and odd hydrogen recombines effi-
cientlyy. A minimum near the mesospause is

predicted where H> oxidation dominates [3].
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Descent of mesospheric air [5] 19 Nov 1999 (red) to 5 Mar 2000 (blue)
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Chemistry: The distribution of chemical species
with sufficiently slow production and loss pro-
cesses will be controlled by transport.
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Overestimate H20
when neglecting H2
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C'O is produced by the oxidation of strato-
spheric methane and by the photodissociation
of carbon dioxide in the mesosphere. The influ-
ence of tropospheric OH on surface emissions is
evident [1].
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We infer the H2O profile by assuming total (even) hydrogen
conservation in Figure a, which highlights 1) the overestima-
tion of HoO when neglecting the mesospheric Ha reservoir
and 2) dehydrated mesospheric air enters the vortex.

The H2O/C H4 gradient in Figure b indicates different regions
of hydrogen chemistry. The early vortex exhibits balanced oxi-
dation and production of Ha (R=2). Departures in the late vor-

tex arise from increased oxidation near the mesopause (R>2)

Measurements: Balloonborne Lightweight Airborne Chromatograph
Experiment (LACE) measurements made from Kiruna, Sweden (68°N)
[4]. Profiles were measured up to 35 km in altitude on 19 November 1999
and 5 March 2000 as part of the SAGE III Ozone Loss and Validation Ex-
periment (SOLVE). The March, 2000 LACE measurements of descended
air parcels may be the first direct measurements of the mesospheric H»
profile.
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and from H> production by H2O photolysis (R<2) above 27
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hree measured LACE species can be used as mesotracers: H,, CO, and SFg. All are relatively stable in the
stratosphere, but have marked mesospheric sinks or sources that imprint upon the descending vortex air.
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S F is depleted in the mesosphere by a-Lyman
radiation and electron attachment. It is emitted
anthropogenically from the surface [2].

Extended mesospheric profiles are consistent with
LACE tracer-tracer relationships.
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A model of differential descent and mixing in the polar vortex,
constrained by stratospheric tracer-tracer relationships and S Fg
as a mesotracer, has previously calculated 2-4% mesospheric air
in the late vortex [6].
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We plan next to update the model with extended initial profiles
of the mesostracers H> and C'O, which provide additional
constraints at different heights in the mesosphere. The result
should be a more robust estimate of the amount and character-
istics of mesospheric descent within the polar vortex.

LACE measurements of the early and late 1999-
2000 polar vortex offer an unparalleled set of
stratopheric and mesospheric tracer measure-
ments. Over the evolution of the vortex, we ob-
serve three mesotracers, SFg, CO, and H, descend
to stratospheric heights. LACE profiles and tracer-
tracer relationships validate current understand-
ing of mesospheric chemistry. Theoretical profiles
were constructed and tested, and will be used to
constrain a model of differential descent and mix-
ing to determine the mesospheric contribution to
the polar vortex.
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